LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - CHEMISTRY

FOURTH SEMESTER - APRIL 2013

CH 4956 - ADVANCED COORDINATION CHEMISTRY

Date: 30/04/2013	Dept. No.	Max. : 100 Marks
Time: 1:00 - 4:00	l	

Part-A

Answer all questions. Each question carries two mark:

10x2=20

- 1. What are excimers?
- 2. The coordination compounds of high-spin Mn(II) are feebly colored, whereas that of Mn(VII) are intensely colored. Explain.
- 3. What is transmetallation reaction. Cite an example.
- 4. What are internal electrochemical standard? Cite two such compounds.
- 5. How is the covalent character in transition metal complexes evaluated quantitatively?
- 6. Mention the different kinds of metallodendrimers.
- 7. Mention the roles of internal electrochemical standard. Cite two examples.
- 8. What are compartmental ligands? Give an example.
- 9. Mention the role of bridging ligands in the assembly of supramolecules. Cite an example.
- 10. In which of the compounds would you expect detectable Jahn Teller distortion: $[Mn(H_2O)]^{3+}$ or $[Mn(en),(NH_3),]^{3+}$? Justify your answer.

Part-B

Answer eight questions. Each question carries five marks:

8x5 = 40

- 11. Explain photoisomerization reaction with an example.
- 12. Highlight the spectroscopic and photochemical properties of polypyridylcomplexes of ruthenium(II).
- 13. Explain the electronic absorption spectral features of high spin octahedral and tetrahedral complexes of transition metal ions.
- 14. What is a molecular architecture? Explain the synthesis of a molecular square.
- 15. What are rotaxanes? Explain the construction of such an assembly.
- 16. Explain the template synthesis of 2- and 3-catenanes.
- 17. Define molecular machine. Explain the synthesis of one such molecule.
- 18. Explain the construction of a photochemically controlled molecular shuttle.
- 19. Explain acid/base driven threading and dethreading motions in supramolecular assemblies.
- 20. What are Tanabe Sugano diagrams? How are they constructed?
- 21. Illustrate the importance of cation cavity "best-fit" in the synthesis of macrocyclic complexes by coordination template effect with illustrative examples.
- 22. Explain the principle of cyclic voltammetry and the method of evaluating the electrochemical reversibility of a redox couple.

Part-C

Answer four questions. Each question carries ten marks

4x10=40

- 23a. According to MO theory, π -donation by ligands lowers the magnitudes of $10D_q$ values whereas π -back bonding increases its magnitude. Explain with a qualitative MO energy level diagrams.
 - b. Justify the position of π -donating and π -back bonding ligands in the spectrochemical series.
- 24. A six-coordinate low-spin cobalt(III) complex of a quadridentate ligand in the equatorial position with two monodentate ligands in the axial sites exhibits electronic transitions at 660 nm (∈ = 76.5 L mol⁻¹ cm⁻¹), 525 nm (∈ = 1260 L mol⁻¹ cm⁻¹), and 415 nm (∈ = 396 L mol⁻¹ cm⁻¹). Assign these transitions, predict the geometry, and compute the field strength of the axial and equatorial ligands.
- 25a. What are contrast enhancing agents for MRI? Explain their role in accelerating water proton relaxivity.
 - b. Give the structure of the FDA-approved contrast agents for MRI.
- 26a. Explain the principle and methodology of constructing a dye sensitized solar cell.
 - b. Give an account of Ru(II) polypyridyl complexes used in the construction of solar cells.
- 27a. Explain the methods of synthesizing dendrimers.
 - b. Give an account of the application potential of dendrimers and metallodendrimers.
- 28. Explain template synthesis of macrocyclic and compartmental macrocyclic ligands and their complexes with illustrative examples.
